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a b s t r a c t

In a single degree-of-freedom weakly nonlinear oscillator subjected to periodic external

excitation, a small-amplitude excitation may produce a relatively large-amplitude

response under primary resonance conditions. Jump and hysteresis phenomena that

result from saddle-node bifurcations may occur in the steady-state response of the

employed to suppress the nonlinear vibrations of the forced nonlinear oscillator for the

primary resonance conditions. The values of the spring stiffness and mass of the

vibration absorber are significantly lower than their counterpart of the forced nonlinear

oscillator. Vibrational energy of the forced nonlinear oscillator is transferred to the

attached light mass through linked spring and damper. As a result, the nonlinear

vibrations of the forced oscillator are greatly reduced and the vibrations of the absorber

are significant. The method of multiple scales is used to obtain the averaged equations

that determine the amplitude and phases of the first-order approximate solutions to

primary resonance vibrations of the forced nonlinear oscillator. Illustrative examples

are given to show the effectiveness of the dynamic vibration absorber for suppressing

primary resonance vibrations. The effects of the linked spring and damper and the

attached mass on the reduction of nonlinear vibrations are studied with the help of

frequency response curves, the attenuation ratio of response amplitude and the

desensitisation ratio of the critical amplitude of excitation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In a forced single degree-of-freedom weakly nonlinear system, nonlinear resonances may occur if the linearized natural
frequency of the system and the frequency of an external excitation satisfy a certain relationship. A small-amplitude
excitation may produce a relatively large-amplitude response under primary resonance conditions when the forcing
frequency is in the neighbourhood of the linearized natural frequency. Additionally, the steady-state forced response of the
nonlinear system may exhibit nonlinear dynamic behaviours including saddle-node bifurcations, jump and hysteresis
phenomena [1]. These behaviours along with large-amplitude resonant vibrations are undesirable in many applications
because they can result in unacceptable levels of vibration and discontinuous dynamic behaviour. The nonlinear vibrations
and jump phenomena should thus be attenuated by appropriate approaches from the perspective of vibration control and
disaster prevention.
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Over the past decade, active control methods have been developed to suppress the nonlinear resonance vibrations of
weakly nonlinear systems with parametric or external excitations. These methods include time-delayed feedback control
[2–6], a linear-plus-nonlinear feedback control [7,8] and a nonlinear parametric feedback control [9]. The application of
such feedback control schemes to the control of nonlinear vibrations and bifurcations does not add an extra degree-of-
freedom system into the nonlinear systems to be controlled. Introduction of an ‘auxiliary system’ into the existing linear
structures to be controlled has also been considered using nonlinear coupling and internal resonances between the
auxiliary system and the linear primary structure. An internal resonance control technique has been developed by creating
a linear second-order controller coupled to a linear vibration system via quadratic terms [10–12]. The controller was
implemented by making use of the saturation phenomenon which may exist in a weakly nonlinear system with quadratic
nonlinearities and under one-to-two internal resonance between two linearized natural frequencies [1]. Under internal
resonances, the quadratic nonlinear terms act as a bridge for energy exchange between the linear system and the
controller. It should be noted that the use of active controllers for attenuation of vibrations is not feasible in many
applications, for reasons including cost or the need of an independent energy supply. A passive control approach is an
alternative under these circumstances [13]. Additionally, a passive vibration control system may be required as a back-up
to prevent complete disaster in the event of the failure of active control methods.

In the context of the passive vibration control of linear mechanical systems, one of the well developed approaches for
reducing vibration levels is to add a secondary linear oscillator to the existing linear system or structure. This secondary
oscillator, commonly called a dynamic vibration absorber [14,15], may be a simple mass–spring–damper system attached
at a single point of a linear mechanical system or structure. The main purpose of adding the secondary oscillator is to move
the resonant frequency of the mechanical system away from the operating frequency of the vibratory force. The original
single degree-of-freedom system becomes a two degree-of-freedom system with two resonant frequencies, neither of
which will coincide with the operating frequency. The dynamic vibration absorber is usually tuned in such a way that two
natural frequencies of the resulting two degree-of-freedom linear system are away from the excitation (operating)
frequency [14–17]. When a dynamic vibration absorber is incorporated into a linear mechanical system, vibrations of the
mechanical system at its operating frequency can be reduced to negligible proportions and no peak in amplitudes of the
response is reached. Instead, two peaks appear at frequencies below and above the fundamental frequency of the original
system.

Dynamic vibration absorbers have found extensive applications in reducing the amplitudes of vibrations of linear
systems excited near a resonant frequency [14–20]. Linear dynamic vibration absorbers are an effective way of attenuating
vibrations of the primary linear system provided that the operational frequency of the primary linear system is constant. It
was found that better performance of dynamic vibration absorbers can be achieved by introducing nonlinear absorber
springs. It has been shown that the nonlinear vibration absorber incorporating a nonlinear coupling spring element could
offer performance advantages in both narrow- and broad-band applications over its linear counterpart [21–25]. But,
unfortunately, the presence of nonlinearities may introduce dynamic instabilities and result in amplification rather than
reduction of the vibration amplitudes [26–28]. Such situations can generally occur in two cases. The first case is when the
nonlinear vibration absorber is tuned in such a way that the desired operating frequency is approximately the mean of the
two linearized natural frequencies of the system [26,27]. Thus a combinational resonance may result in near-periodic
vibrations having large amplitudes. The other case is when the two linearized natural frequencies of the resultant system
are under one-to-one internal resonance conditions [28]. Loss of stability of the periodic response and quasi-periodic
oscillations with much higher amplitudes may happen for the primary resonance response of the nonlinear system under
certain combinations of system parameters.

In addition to the use of either linear or nonlinear vibration absorbers to suppress the vibrations of linear systems, linear
vibration absorbers can also be applicable to controlling the nonlinear vibrations of nonlinear mechanical systems. An
experimental study by Bonsel et al. [29] showed that a linear dynamic vibration absorber is capable of suppressing the first
harmonic resonance as well as super- and sub-harmonic resonances of a piecewise linear beam.

The main purpose of the present paper is to suppress the primary resonance vibrations of a weakly nonlinear
system with a periodic excitation using a linear vibration absorber. The linear vibration absorber referred to here is a
mass that is relatively light in comparison with the mass of the nonlinear primary system and is attached to the
nonlinear primary system by a linear spring and a linear damper (also called coupling). The damping coefficient and
the spring stiffness of the absorber are much lower than their counterpart, as such the vibration absorber can be
considered as a small attachment to the nonlinear primary system. The addition of an absorber to the nonlinear
primary system (one-degree-of-freedom weakly nonlinear system) results in a new two degree-of-freedom weakly
nonlinear system. The characteristics of the nonlinear primary system attached by the linear absorber change only
slightly in terms of the values of its new linearizied natural frequency, damping coefficient and frequency interval for
primary resonance, because the vibration absorber is a small attachment and does not contribute significantly to the
change of these parameters (linear stiffness and damping coefficient). Two ratios, namely attenuation ratio and
desensitisation ratio, will be defined in the present paper to indicate the effectiveness of the linear absorber in
suppressing the primary resonance vibrations. The attenuation ratio will be defined by the ratio of the maximum
amplitude of vibrations of the nonlinear primary system after and before adding the linear vibration absorber under a
given value of the amplitude of excitation. The desensitisation ratio will be given by the ratio of the critical values of
the amplitude of external excitations presented in the nonlinear primary system after and before the linear vibration
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absorber is attached. The critical value of the excitation amplitude refers to here as a certain value of external
excitation that results in the occurrence of saddle-node bifurcations and jump phenomena in the frequency–response
curve. Below this critical value, the frequency–response curve of the primary resonance vibrations does not
show saddle-node bifurcations (and jump phenomena) and will exhibit saddle-node bifurcations and jump
phenomena if the amplitude of excitation exceeds the critical value. It will be shown that the linear vibration
absorber is effective in attenuating the primary resonance vibrations of the nonlinear primary system. The underlying
mechanism is that the addition of linear absorber to the nonlinear primary system modifies the coefficients in the
averaged equations (as will be shown in Section 3) that determine the amplitude and phase of the first-order
approximate solution and thereby modifying the frequency–response curve of the nonlinear primary system under
primary resonance conditions.

The present paper is organised into six sections. Section 2 presents the mathematical modelling of the vibrations of a
nonlinear primary system attached by a linear vibration absorber. Perturbation analysis is performed in Section 3 to
obtain the averaged equations that determine the amplitude and phase of the first-order approximate solution of a two
degree-of-freedom nonlinear system. Section 4 introduces the attenuation ratio and desensitisation ratio to indicate the
effectiveness of linear vibration absorber. Illustrative examples are presented in Section 5 and conclusion is given in
Section 6.

2. Mathematical modelling

It is assumed here that a single degree-of-freedom weakly nonlinear system may be described as one which consists of
a mass subjected to a periodic excitation. The mass m1 is attached to a rigid boundary through a viscous damper and a
spring of linear-plus-nonlinear characteristic, as shown in Fig. 1. A significantly lighter mass m2 (in comparison with the
main mass m1), which will be referred to here as a small attachment, is connected to the nonlinear system (also called
nonlinear primary system) through a massless damper and a massless spring. The addition of the small attachment to the
nonlinear primary system results in a new two degree-of-freedom nonlinear system.

By applying Newton’s second law of motion, two equations of motion for the new system composed of the nonlinear
primary system incorporated by a small attachment may be written as

m1 €x1 ¼�k1x1�k2x3
1�c1 _x1þk3ðx2�x1Þþc2ð _x2� _x1Þþ f0 cosðOtÞ;

m2 €x2 ¼�k3ðx2�x1Þ�c2ð _x2� _x1Þ; (1)

where m1 denotes the mass of the nonlinear primary system and m2 the mass of the small attachment. k1, k2 and c1

represent the linear, nonlinear stiffness and damping coefficient in relation to mass m1, respectively. The coupling stiffness
and damping coefficient are k3 and c2. The displacements of the nonlinear primary system and the small attachment, as
shown in Fig. 1, are denoted by x1 and x2. An overdot indicates the differentiation with respect to time t.

Dividing m1 on both sides of the first equation and dividing m2 on both sides of the second equation and then rewriting
the resultant equations yields the following equations:

€x1þm1
_x1þo2

1x1�mm2
_x2�mo2

2x2þax3
1 ¼ f cosðOtÞ; (2a)

€x2þm2ð _x2� _x1Þþo2
2ðx2�x1Þ ¼ 0; (2b)

where m1 ¼ ðc1þc2Þ=m1 ¼ m10þmm2, o2
1 ¼ ðk1þk3Þ=m1 ¼o2

10þmo2
2, m¼m2=m1, m2 ¼ c2=m2, o2

2 ¼ k3=m2, a¼ k2=m1,
f ¼ f0=m1, m10 ¼ c1=m1, o2

10 ¼ k1=m1. Here, parameters m10, o10 are used to represent the damping coefficient and the
linearized natural frequency of the weakly nonlinear oscillator alone.

Eq. (2) can be interpreted in the context of nonlinear oscillations as a two degree-of-freedom weakly nonlinear system
subjected to a periodic excitation. The forced oscillations of a two degree-of-freedom nonlinear system having cubic
m1

fcos(Ωt) 
k1, k2

k3

c1 c2
m2

x2

x1

Fig. 1. The combined two degree-of-freedom nonlinear system composed of nonlinear primary oscillator and linear vibration absorber.
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nonlinearities have been studied by many researchers [1,28]. The attention of these studies has focused on the case of
internal resonances when o1 �o2 or o2 � 3o1. Specifically, Nayfeh and Mook [1] considered the forced oscillations of
cubically nonlinear systems without linear coupling terms under internal resonances o2 � 3o1. Natsiavas [28] studied the
steady-state oscillations and stability of the nonlinear system having cubic nonlinearities under one-to-one internal
resonances (i.e. o1 �o2). It was shown that the presence of one-to-one internal resonances in the nonlinear system of
dynamic vibration absorber may result in instability of the periodic response and quasi-periodic oscillations with much
higher amplitudes. The mathematical modelling considered in the present paper represents a two degree-of-freedom
nonlinear system that consists of a one-degree-of-freedom weakly nonlinear oscillator linearly coupled with a linear
oscillator. The focus of the present paper is on the use of linear vibration absorber to suppress the primary resonance
response of a weakly nonlinear oscillator in the absence of internal resonances, rather than steady-state solutions and
stability of the system under one-to-one internal resonances. The natural frequency of the linear absorber alone and the
linearized natural frequency of the nonlinear oscillator are not under internal resonances including one-to-one and three-
to-one resonances.

It is noted that nonlinear resonances may occur in the forced response of the resultant system when the forcing
frequency O and the linearized natural frequency o1 satisfy a certain relationship. The primary resonance response of the
nonlinear system given by Eq. (2) will be discussed in subsequent section using a perturbation method, as the closed form
of the solutions to Eq. (2) cannot be found analytically.

3. Perturbation analysis

A brief discussion on the order of the coefficients in Eq. (2) is necessary before performing perturbation analysis. It
should be mentioned that the main purpose of the present research is to investigate the suppression of the nonlinear
vibrations of a nonlinear primary oscillator using a small attachment without adversely affecting the performance of the
nonlinear primary oscillator. The connection between the nonlinear primary system and small attached mass is via linear
damper and spring. The small attached mass and the damping and spring stiffness of coupling can be considered as a
perturbation to the nonlinear primary oscillator, in a sense that the nonlinear primary system is weakly coupled with the
small attachment. As a result, the linear stiffness and mass of the nonlinear primary oscillator should be much larger than
the stiffness of the linked spring and the mass of the small attachment. For the attachment, though its stiffness and mass
are small in comparison with those of the nonlinear primary system, the linear stiffness of the attachment is comparable
with its mass and thus is assumed to be leading terms in Eq. (2b). In particular, all damping terms and nonlinear term are
assumed to be small and in the order of O(e) in Eq. (2a) and the damping term is considered to be in the order of O(e) in
Eq. (2b). Then the perturbation analysis will result in the leading linear terms in the first-order equations, the small linear
and nonlinear terms in the second-order equations. As the values of the coupled stiffness and damping for the nonlinear
primary oscillator is much smaller than those of its own stiffness and damping, the property of the nonlinear primary
system does not change significantly.

On the basis of the above discussions on the order of the coefficients, Eq. (2) can be rewritten as

€x1þem1
_x1þo2

1x1�emm2
_x2�emo2

2x2þeax3
1 ¼ f cosðOtÞ; (3a)

€x2þem2
_x2þo2

2x2 ¼ em2
_x1þo2

2x1; (3b)

where e is a dimensionless parameter with e51, the coefficients of the damping term and nonlinear term, m1, m2 and a in
Eq. (2) have been re-scaled in terms of m1 ¼ em1, m2 ¼ em2 and a¼ ea, and the overbars in m1, m2 and a have been removed
for brevity. The amplitude of the excitation has been re-scaled in terms of f ¼ ef to account for the primary resonances and
the overbar in f has been removed for the sake of brevity. Equation (3) can be regarded as a weakly nonlinear system with
an external excitation being coupled by a linear system.

It is noted that two terms: em2
_x1 and o2

2x1 that appear on the right hand side of Eq. (3b), act as external excitations to
the attached oscillator (linear vibration absorber). The majority of vibrational energy of the nonlinear primary system is
then transferred to the linear absorber through the coupling terms between the nonlinear primary oscillator and vibration
absorber. The vibrational energy flowing from nonlinear primary system to absorber results in a reduction of primary
resonance vibration of the nonlinear primary system.

The method of multiple scales is employed to obtain a set of four averaged equations that determine the amplitudes and
phases of the steady-state solutions on a slow scale [1]. For the sake of simplicity, only the first-order approximate
solutions will be sought in subsequent analysis. It is assumed that the solutions of Eq. (3) in the neighbourhood of the
trivial equilibrium are represented by an expansion of the form:

x1ðt; eÞ ¼ x10ðT0; T1Þþex11ðT0; T1ÞþOðe2Þ;

x2ðt; eÞ ¼ x20ðT0; T1Þþex21ðT0; T1ÞþOðe2Þ; (4)

where e is a non-dimensional small parameter, T0 ¼ t is a fast scale associated with changes occurring at the frequencies o1

and O, and T1 ¼ et is slow scale associated with modulations in the amplitude and phase caused by the nonlinearity,
damping and resonances. The derivatives of x1 and x2 with respect to t then become expansions in terms of partial
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derivatives with respect to T0 and T1 given by

d

dt
¼

dT0

dt

q
qT0
þ

dT1

dt

q
qT1
¼D0þeD1;

d2

dt2
¼

q2

qT2
0

þ2e q2

qT0qT1
þOðe2Þ

 !
¼D2

0þ2eD0D1þOðe2Þ:

It should be noted that Eq. (3b) is a linear differential equation and thus its solution can be expressed in a closed form as
long as solutions x1 and _x1 are available. The solution to Eq. (3b) consists of general and particular solutions depending on
the solutions x1 and _x1 that can be obtained from Eq. (3a). As defined by Eq. (4), the solution x1 cannot be expressed in a
closed form. Here it has thus been assumed that the solution x2 is also expressed as an approximate solution comprising of
two parts.

Substituting the approximate solutions (4) into Eq. (3), taking into consideration the new multiple independent
variables of time, and then balancing the like powers of e, results in the following ordered perturbation equations:

e0 : D2
0x10þo2

1x10 ¼ 0; D2
0x20þo2

2x20 ¼o2
2x10; (5)

e : D2
0x11þo2

1x11 ¼�2D0D1x10�m1D0x10þmm2D0x20þmo2
2x20�ax3

10þ f cosðOT0Þ;

D2
0x21þo2

2x21 ¼�2D0D1x20�m2D0x20þm2D0x10þo2
2x11: (6)

The general solutions to Eq. (5) can be expressed in complex form as

x10 ¼ AðT1Þexpðio1T0Þþcc;

x20 ¼ F0AðT1Þexpðio1T0ÞþBðT1Þexpðio2T0Þþcc; (7)

where AðT1Þ and BðT1Þ are an arbitrary function at this level of approximation. F0 ¼ 1=ð1�o2
1=o2

2Þ, and cc stands for the
complex conjugate of the preceding terms. AðT1Þ and BðT1Þwill be determined by imposing the solvability conditions at the
next level of approximations.

For the case of primary resonances, the forcing frequency is assumed to be almost equal to the linearized natural
frequency of the nonlinear primary system according to

O¼o1þes; (8)

where s is an external detuning parameter to express the nearness of O to o1.
Substituting solution (7) into Eq. (6) yields

D2
0x11þo2

1x11 ¼�i2o1ðD1AÞexpðio1T0Þþ
1
2f expðio1T0þ isT1Þ�aA3 expði3o1T0Þ

þðmo2
2F0A�3aA2A�im1o1Aþ imm2o1F0AÞexpðio1T0Þ

þðmo2
2Bþ imm2o2BÞexpðio2T0Þþcc; (9a)

D2
0x21þo2

2x21 ¼�i2o2ðD1BÞexpðio2T0Þþo2
2x11�im2o2B expðio2T0Þ

þ½im2o1A�im2o1F0A�2io1F0ðD1AÞ�expðio1T0Þþcc; (9b)

where AðT1Þ is the complex conjugate of AðT1Þ. For the sake of brevity, AðT1Þ, BðT1Þ and AðT1Þ have been expressed by A, B and
A, respectively.

Solution x21 can be obtained from Eq. (9b) only after solution x11 to Eq. (9a) is available. It should be made aware that
only the term with argument expð7 io2T0Þ in solution x11 will make contributions to the secular terms in equations (9b).
In eliminating the terms that lead to secular terms from equation (9b), the particular solution x11 of equation (9a) can be
written as

x11 ¼ KB expðio2T0ÞþNSTþcc; (10)

where K ¼ ðmo2
2þ imm2o2Þ=ðo2

1�o2
2Þ and NST stands for the terms that do not produce secular terms in seeking solution

x21.
Then, eliminating the terms that lead to secular terms from Eq. (9) yields

1
2f expðisT1Þþðmo2

2F0�im1o1þ imm2o1F0ÞA�3aA2A�2io1D1A¼ 0;

o2
2KB�im2o2B�2io2D1B¼ 0: (11)

The functions A and B (i.e. AðT1Þ and BðT1Þ) can be expressed in the polar form as

A¼ 1
2 aðT1Þexp½ibðT1Þ�; B¼ 1

2bðT1Þexp½iyðT1Þ�; (12)

where aðT1Þ, bðT1Þ, bðT1Þ and yðT1Þ are real functions of time T1.
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Substituting Eq. (12) into Eq. (11) and then separating real and imaginary parts gives rise to

_a ¼ g11a�e sinðgÞ;

a _g ¼�ðsþg210Þaþg22a3�e cosðgÞ;

_b ¼ h11b;

b _y ¼ h21b; (13)

where for notation purpose four functions aðT1Þ, bðT1Þ, bðT1Þ and yðT1Þ have been expressed by a, b, b and y, respectively,
g¼ b�sT1, g11 ¼ ð�m1þmm2F0Þ=2, e¼ f=ð2o1Þ, g210 ¼mo2

2F0=ð2o1Þ, g22 ¼ 3a=ð8o1Þ, h11 ¼�m2ð1þmF0Þ=2, h21 ¼mo2F0=2.
The steady-state solutions to the primary resonance response can be studied by finding the solutions to the first three

algebraic equations which can be obtained by letting _a ¼ _b ¼ 0 and _g ¼ 0 in Eq. (13). Elimination of the trigonometric terms
in the first two algebraic equations gives rise to

g2
11a2þð�s�g210þg22a2Þ

2a2 ¼ e2;

h11b¼ 0: (14)

This is the so-called frequency response equation. Real positive solutions of this equation that can be obtained
numerically may lead to the frequency–response curve. It is easy to notice that the two equations are not coupled and the
solution to the second equation is b=0. Eq. (14) indicates that the amplitude of the first-order approximate solution to the
free-oscillation term of the vibration absorber admits trivial solutions only. The response of the absorber consists of
only forced vibrations resulting from the nonlinear primary system. The amplitude of the first-order approximate solution
of the nonlinear primary system is determined by the first equation only, which is of the similar form to that of
Duffing oscillator but with modified coefficients g11 and g22. The addition of a small attachment can thus change the
amplitude of the first-order approximate solution and the frequency–response curve. The stability of the solutions can be
examined by computing the eigenvalues of the Jacobian matrix corresponding to the first three equations of Eq. (13).

It is found that three eignenvalues determining the stability of the steady-state solutions are given by l1;2 ¼ g117ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

22a4�ð�s�g210þ2g22a2Þ
2

q
, l3 ¼ h11. The steady-state solutions that can be obtained numerically from Eq. (14) are stable

only if the three eigenvalues have negative real parts.
Generally speaking, the frequency-response curve may exhibit saddle-node bifurcations, jump phenomena, and the

coexistence of multiple solutions, when the coefficients in the first equation of (14) satisfy certain conditions. The saddle-
node bifurcation points are at the locations of vertical tangency of the frequency response curve. Differentiation of the first
equation of Eq. (15) implicitly with respect to a2 and setting ds=da2 ¼ 0 leads to the condition:

ðg22a2�s�g210Þ
2
þ2g22ðg22a2�s�g210Þa

2þg2
11 ¼ 0 (15)

with solutions being s7 ¼ 2g22a2�g2107
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

22a4�g2
11

q
. For g2

22a44g2
11, there exists an interval s�ososþ in which three

real solutions a of Eq. (14) exist. In the limit g2
22a4 ¼ g2

11, this interval shrinks to the point s¼ 2g22a2�g210, indicating no

jump phenomena occurring in the frequency–response curve. The critical amplitude of excitation (denoted by ecrit ) that

can be obtained from Eq. (14) is written as ecrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jg3

11=g22j

q
. For eoecrit, there is only one solution for the amplitude a in

the neighbourhood of the primary resonances, while for e4ecrit, there are three solutions for the amplitude a in the
interval s�ososþ .

The peak amplitude (denoted by ap) of the forced response for the nonlinear primary system with attached vibration
absorber can also be obtained from Eq. (14) and is given by ap ¼ e=jg11j. The peak amplitude is the maximum amplitude of
the primary resonance vibrations under a given set of external excitations.

4. Attenuation ratio and desensitisation ratio

For the purpose of comparison, the equation of motion for the nonlinear primary oscillator without attached mass (see
Fig. 1) can be written as:

€x1þm10
_x1þo2

10x1þax3
1 ¼ f cosðOtÞ: (16)

where O¼o10þes0, m10 ¼ c1=m1, o2
10 ¼ k1=m1, as introduced after Eq. (2) in Section 2.

The frequency–response equation is then given by

m10

2

� �2
a2

0þð�s0þg220a2
0Þ

2a2
0 ¼ e2

0; (17)

where a0 denotes the amplitude of the primary resonance response of the nonlinear primary system without attachment,
e0 ¼ f=ð2o10Þ, g220 ¼ 3a=ð8o10Þ.
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The corresponding critical amplitude of excitation for the nonlinear primary oscillator alone, denoted by e0crit, is given

by e0crit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

10=ð4jg220jÞ

q
. Similarly, the corresponding peak amplitude of the forced response for the nonlinear primary

oscillator alone, denoted by a0p, is found to be a0p ¼ 2e0=m0.

The performance of the vibration absorber on the reduction of nonlinear vibrations cannot be studied using a similar
procedure to that for the linear system by discussing the ratio of response amplitude and the amplitude of excitation
because the response amplitude cannot be found analytically for a nonlinear system (see Eq. (14)). Additionally, at certain
frequencies of excitation, the nonlinear primary system may have two stable responses depending on the initial conditions
of the system. Therefore a different method has to be developed here to study the performance of vibration absorber. In
suppressing the primary resonance vibrations of the nonlinear primary oscillator, the performance of the vibration
absorber will be examined in the present paper by defining two ratios, namely the attenuation ratio of the peak amplitude
of the primary resonance response and the desensitisation ratio of the critical amplitude of the external excitation.

The attenuation ratio of the peak amplitude of primary resonance response is defined by the ratio of the peak amplitude
of primary resonance vibrations of the nonlinear primary system with and without the attachment. By this definition the
attenuation ratio, denoted by R, can be expressed as

R¼
ap

a0p
¼

e

jg11j

� �
2e0

m10

� �
¼

m10o10

j�m1þmm2F0jo1
¼

m10o10

j�m10�mm2þmm2F0jo1
:

�
(18)

As can be seen from the definition given by Eq. (18), under a fixed value of the amplitude of excitation, a small value of
the attenuation ratio R indicates a large reduction in the nonlinear vibrations of the nonlinear primary system. Given the
fact that the damping coefficients ðm10;m1;m2Þ, mass ratio (m) and the linearized natural frequencies ðo10;o1Þ are positive
in values, it is easy to note that parameter F0 should be negative in order to achieve a large reduction ratio and get better
performance of vibration suppression. An analysis of the value of F0 ¼ 1=ð1�o2

1=o2
2Þ reveals that F0o0 for o14o2, and

F041 for o1oo2. A negative F0 requires the linearized natural frequencies of the nonlinear primary system and vibration
absorber satisfying o14o2, indicating the natural frequency of the vibration absorber should be smaller than the new
linearized natural frequency of the nonlinear primary system attached by the vibration absorber.

The desensitisation ratio (denoted by E) of the critical amplitudes of the excitation is defined by the ratio of the critical
amplitudes of the excitations presented in the nonlinear primary system with and without attached vibration absorber,
which is given by

E¼
ecrit

e0crit
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�m1þmm2F0Þ

3o1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

10o10

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�m10�mm2þmm2F0Þ

3o1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

10o10

q : (19)

A large desensitisation ratio (E41) corresponds to a large critical amplitude of the excitation. A larger desensitisation
ratio indicates that saddle-node bifurcations and jump phenomena will be eliminated in the primary resonance response
of the nonlinear primary system with the attachment of vibration absorber, for a given value of the amplitude of excitation
where saddle-node bifurcations and jump phenomena can appear in the frequency–response curve of the nonlinear
primary system alone. The vibration absorber cannot only suppress the nonlinear vibrations but can also eliminate the
saddle-node bifurcations which otherwise appear in the primary resonance response of the nonlinear primary system
before the linear vibration absorber is attached. Given that damping coefficients, mass ratio and frequencies ðo14o1040Þ
are all positive in values, it is easy to note that a negative F0 results in a larger E, which means better performance can be
achieved by ensuring two linearized natural frequencies satisfying o14o2. A negative value of F0 ensures that E41. The
smaller F0, the larger E.

It should be mentioned that a negative F0 will lead to a better performance of reduction of primary resonance
vibrations. The smaller negative F0, the better the performance of vibration reduction. As given in the equation
F0 ¼ 1=ð1�o2

1=o2
2Þ, a much smaller F0 can be obtained when o2 is approaching to o1 under o14o2. However, numerical

simulations have suggested the primary resonance vibrations cannot always be attenuated but rather magnified under
certain combination of system parameters and initial conditions if o2 is too close to o1. As such, the internal resonances of
one-to-one type occur in the primary resonance response of the two degree-of-freedom nonlinear system consisting of the
nonlinear primary system and vibration absorber. The interaction of one-to-one internal resonances would lead to an
increase of the amplitudes of primary resonance vibrations under certain combinations of system parameters. The
numerical results confirmed the theoretical predictions of the nonlinear interaction of nonlinear systems given in the
literature. For example, Natsiavas [28] studied steady-state oscillations and stability of nonlinear dynamic vibration
absorbers under one-to-one internal resonances (i.e. o1 �o2) and found the loss of stability of the periodic response and
the onset of quasi-periodic oscillations with much higher amplitudes. The vibrations of the two degree-of-freedom
nonlinear system under one-to-one internal resonances are outside the scope of the present paper. Though no analytical
evidence is available in the literature, it is fairly safe to assume that o2 should be less than 0.9o1 in order to avoid the one-
to-one internal resonances. For the purpose of vibration reduction, the frequency o2 should be away from frequency o1

but can still ensure a smaller negative F0.
In suppressing the vibration of a linear system, the addition of a secondary mass–spring–damper system to the main

linear system will create a combined system with two resonant frequencies. Resonances will occur if the excitation
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frequency is close to one of the natural frequencies and thus the combined system exhibits two peaks in the response [13–
17]. For a weakly nonlinear oscillator attached by a linear vibration absorber, as discussed in the present paper, it is natural
to assume that an extra peak will appear in the forced response resulting from the introduction of a new resonant
frequency (i.e. the natural frequency of the absorber). It is expected that a peak in amplitude will appear around this
frequency. Mathematically the combined system of the nonlinear primary oscillator and linear absorber can be considered
as a synthesis of a weakly nonlinear oscillator and a linear oscillator through linear coupling. It should be noted that for a
single degree-of-freedom nonlinear oscillator under non-resonant hard excitations, the steady-state response consists of
the forced solution only, as in the linear case [1]. In this regard, the effect of weekly nonlinear terms on the steady-state
response can be neglected as long as the frequency of the excitation O is away o1, 1

3o1 and 3o1, which correspond to the
primary resonances, super-harmonic resonances and sub-harmonic resonances, respectively. In the absence of internal
resonances the steady-state motions of the combined system in the neighbourhood of the absorber frequency are linear
and can be obtained from the corresponding linearized system.

It is assumed that the steady-state solutions to the corresponding linearized equation of Eq. (2) have the form:

x1 ¼ X11 cosðOtÞþX12 sinðOtÞ;

x2 ¼ X21 cosðOtÞþX22 sinðOtÞ: (20)

The four unknown constants X11, X12, X21, X22 can be obtained by substituting Eq. (20) into Eq. (2) and by using Cramer’s
method. Substitution of Eq. (20) into Eq. (2) results in a system of four linear equations expressed in matrix form as

Ay¼ p; (21)

where A is a 4�4 matrix and the vector y¼ ðX11;X12;X21;X22Þ
T is the column vector of the variables. The solutions are

given by

yi ¼ detðAiÞ=detðAÞ i¼ 1;2;3;4; (22)

where Ai is the matrix formed by replacing the ith column of A by the column vector p, and the elements of matrix A and
vector p are not given here for the sake of brevity.

5. Illustrative examples and discussion

This section presents illustrative examples to show the effectiveness of the linear vibration absorber for suppressing the
nonlinear vibrations of the nonlinear oscillator under primary resonance conditions. The performance of linear vibration
absorber on attenuation of nonlinear vibrations will be interpreted by the frequency–response curves, time histories of the
forced response, the attenuation ratio of the maximum amplitudes of vibrations and the desensitisation ratio of critical
amplitudes of the excitation of the nonlinear primary system before and after the absorber is attached.

Numerical simulations have been performed under the following values of the system parameters: m1 ¼ 10:0 kg,
m2 ¼ 0:6 kg, c1 ¼ 0:1 Ns=m, c2 ¼ 0:08 Ns=m, k1 ¼ 44:0 N=m, k2 ¼ 8:0 N=m3, k3 ¼ 2:0 N=m, unless otherwise specified. This
combination of system parameters indicates that the mass ratio is 6% (i.e., the quotient of m2=m1, m=0.06) and the
coupling stiffness is approximately 4.55% (which is obtained by the quotient of k3=k1) of the linear stiffness of the
nonlinear primary system. This set of system parameters confirms a small mass attachment to the nonlinear primary
system. The linearized natural frequencies of the nonlinear primary system before and after being attached by the
vibration absorber are found to be approximately o10 ¼ 2:0976 rad=s, o1 ¼ 2:1448 rad=s and the natural frequency of the
vibration absorber be o2 ¼ 1:8257 rad=s. The linearized natural frequencies of the nonlinear primary system before and
after the addition of vibration absorber change slightly, only at approximately 2.19%. The selection of the parameters of
linear vibration absorber made in the present paper is thus distinct from the one for controlling the linear vibrations of
linear systems in the sense that for controlling linear vibrations, the natural frequencies of the resulting system composed
of the linear system attached by vibration absorber are designed to be away from the excitation frequency. For the
nonlinear system considered in the present paper, due to its distinct nature in primary resonances from the dynamics of
linear system, there is no need to shift the linearized natural frequency of the nonlinear primary system away from the
excitation frequency. The nonlinear vibrations of the nonlinear oscillator under primary resonance conditions can be
significantly reduced by adding a small attachment, which is expected to be feasible in practical applications.

It is noted from the definitions of attenuation ratio and desensitisation ratio that the nonlinear stiffness of the nonlinear
primary system has no effect on these two ratios as the parameter a is not included in the expressions of the two ratios.
The absorber mass, stiffness and damping of coupling have significant effects on these two ratios. Fig. 2 shows the
variations of the attenuation ratio and desensitisation ratio with the damping, stiffness and mass of absorber. For fixed
stiffness and mass of the absorber, increase of absorber damping c2 leads to an increase of desensitisation ratio and a
decrease of attenuation ratio, as shown in Fig. 2a. As can be seen from Eqs. (18) and (19), the parameter m2 that corresponds
to the absorber damping c2 is involved in the term ð�m10�mm2þmm2F0Þ, where the parameters m10, m, m2 are positive and
F0 is negative, thereby the term ð�m10�mm2þmm2F0Þ will be negative. An analysis of the two ratios by taking derivatives
with respect to m2 indicates that there is no optimal value of m2 for a minimum value of attenuation ratio R and a maximum
value of desensitisation ratio E. This suggests that there is no optimal value of the absorber damping for attenuation of the
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Fig. 2. Variations of attenuation ratio and desensitisation ratio with damping, stiffness and mass of vibration absorber: (a) with absorber damping c2;

(b) with absorber stiffness k3 and (c ) with absorber mass m2.
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nonlinear vibrations of the nonlinear oscillator, which is distinct from the suppression of vibrations of linear systems. For
linear systems, an optimal value of the absorber damping can be found. A larger value of coupling damping results in a
better performance of vibration reduction. The ratio of the linearizied natural frequencies of the resultant system, defined
by c¼o2=o1, is c¼ 0:8512 for the curves corresponding to k3 ¼ 2:0 N=m and c¼ 0:7372 for the curves corresponding to
k3 ¼ 1:5 N=m. Better performance of vibration reduction can be enhanced by a larger ratio of natural frequencies, as shown
by the curves corresponding to k3 ¼ 2:0 N=m in Fig. 2a.

For fixed damping and mass of the absorber, the desensitisation ratio increases and the attenuation ratio decreases as
the stiffness of the absorber spring k3 increases, as shown in Fig. 2b. This is because an increase of absorber stiffness k3 will
increase the natural frequency o2 of the vibration absorber, thereby increasing the ratio of the two linearized natural
frequencies c. A larger ratio c will lead to a smaller negative value of F0, and the smaller negative value of F0 will result in a
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smaller value of the attenuation ratio and a larger value of the desensitisation ratio. The ratio of the two linearized natural
frequencies c increases its value from 0.3002 to 0.7735 for the curves related to m2 ¼ 1:0 kg and from 0.3356 to 0.8648 for
the curves related to m2 ¼ 0:8 kg. A higher value of stiffness k3 will lead to a better performance of vibration suppression, in
essence, a higher value of frequency ratio c will result in better performance of vibration attenuation. On the contrary, for
fixed damping and stiffness of vibration absorber, the desensitisation ratio decreases and the attenuation ratio increases
with an increase of the absorber mass, as shown in Fig. 2c. The underlying reason for this is that the natural frequency o2

decreases with an increase of absorber mass m2 under a constant stiffness k3. The frequency ratio c decreases its value
from 0.8891 to 0.6287 for the curves corresponding to k3 ¼ 2:0 N=m and from 0.8559 to 0.5475 for the curves related to
k3 ¼ 1:5 N=m, which leads to a larger negative F0 with an increase of the absorber mass m2. This indicates that a small
absorber mass m2 leads to a better performance of vibration attenuation.

As indicated in Eqs. (18) and (19), the attenuation ratio is inversely proportional to the term j�m1þmm2F0j while the
desensitisation ratio is cubically proportional to the term. A larger value of j�m1þmm2F0j means a better performance of
vibration reduction, which requires a smaller negative F0 for given values of damping coefficients and mass ratio. Recall
from Section 3 that F0 ¼ 1=ð1�o2

1=o2
2Þ, being inversely proportional to the ratio of the square of the two linearized natural

frequencies, c¼o2=o1. It is fairly safe to suggest that vibration absorber should be designed in such a way that the
frequency ratio c is a certain value out of an interval of 0.7–0.9, which corresponds to F0 being a certain value of the region
between �0.961 and �4.263.

The performance of a vibration absorber on attenuation of nonlinear vibrations of nonlinear oscillator can be clearly
demonstrated with the help of frequency–response curves. Fig. 3 shows the frequency–response curves of the nonlinear
primary system before and after the addition of the vibration absorber for the amplitude of excitation f=0.42 N, which are
obtained by perturbation analysis. The horizontal axis represents an interval of external detuning s 2 ½�0:2;0:2� rad=s,
which corresponds to a small interval of forcing frequency O 2 ½1:9448;2:3448� rad=s. Without adding the absorber, the
peak amplitude of the nonlinear primary system is 0.75521 cm and saddle-node bifurcations occur in the frequency–
response curve. In the interval s 2 ½�0:02;0:06� rad=s, two stable solutions coexist with a unstable solution in between.
Jump-up phenomenon happens at s¼�0:02 rad=s when decreasing forcing frequency from s¼ 0:2 rad=s, and jump-down
phenomenon occurs at s¼ 0:06 rad=s when increasing forcing frequency from s¼�0:2 rad=s. After adding the absorber to
the nonlinear primary system, the peak amplitude of the nonlinear system has been greatly reduced to 0.022796 cm. The
interval of the multiple coexisting solutions disappears and the jump phenomena are eliminated. The primary resonance
vibrations of the nonlinear primary system have been significantly attenuated. As shown in Fig. 3, the frequencies at which
the amplitudes of primary resonance vibrations reach their maximum have shifted from s¼ 0:06 rad=s for the nonlinear
primary system alone to s¼ 0:155 rad=s for the nonlinear primary system with absorber. In terms of the frequency of
excitation, the maximum amplitudes of primary resonance vibrations occur at O¼ 2:2048 rad=s for the nonlinear primary
system without absorber and at O¼ 2:2998 rad=s for the nonlinear primary system with vibration absorber.

Fig. 4a shows the frequency–response curves for a large interval of the frequency of excitation O 2 ½1:2;2:8� rad=s of the
nonlinear oscillator before and after adding absorber. Dashed and solid lines are used to represent the amplitudes of stable
solutions of the nonlinear oscillator alone and of the nonlinear oscillator with vibration absorber attached, respectively. In
the neighbourhood of primary resonances, the amplitude of nonlinear vibrations of the nonlinear primary oscillator has
been greatly attenuated by adding the linear vibration absorber. The vibration of the nonlinear oscillator with attached
vibration absorber is not zero, but its amplitude is very small in comparing with the amplitude of vibrations of the
nonlinear oscillator alone. Outside of the interval of frequency O 2 ½1:76;2:19� rad=s, the addition of a linear vibration
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absorber has slightly increased the amplitude of vibrations of the nonlinear primary oscillator except in the neighbourhood
of two new linearized resonant frequencies. Therefore the performance of the absorber can be regarded as satisfactory.
There are two resonant peaks appearing on the frequency–response curve of the nonlinear primary oscillator with
absorber attached, which correspond to two resonant frequencies of the combined system. One is the natural frequency of
the vibration absorber alone and the other is the new linearized natural frequency of the nonlinear primary oscillator
incorporated with the vibration absorber. The peak at the lower frequency results from the resonances at the natural
frequency of absorber and the peak at the higher frequency corresponds to the primary resonance response at the new
linearized natural frequency of the nonlinear primary oscillator. The comparison of perturbation analysis (analytical
predictions) and numerical integration is also shown in Fig. 4a where circles represent analytical predictions on the
amplitudes of nonlinear vibrations in the neighbourhood of primary resonances at o1. Only small differences between
the approximate and numerical integration solutions are found. The first-order approximate solutions match well with the
numerical integration solutions. While the first-order approximate solutions obtained using the method of multiple scales
give slightly larger values than the numerical integration solutions. The discrepancies are caused by the first-order
truncation of the expansion solution. A more accurate approximation could be obtained if an additional term of the second
order is included in the approximate solution, but seems unnecessary as the first-order approximations are already good
representations of the primary resonance response.

Fig. 4b shows the frequency–response curves of the nonlinear oscillator with vibration absorber attached under
different damping coefficients of the absorber. Increase of absorber damping leads to reduction of peak amplitude at
resonant frequencies. Fig. 4c shows the variation of the amplitude of vibrations of nonlinear oscillator attached by absorber
under different nonlinear stiffness of the nonlinear oscillator. Though the nonlinear vibrations of the nonlinear oscillator
alone under different nonlinear stiffness are significant, addition of the absorber having a relatively light mass to the
nonlinear oscillator can greatly decrease amplitude of nonlinear vibrations. The vibration absorber is effective in
attenuation of the nonlinear vibrations irrespective of the nonlinear stiffness of the weakly nonlinear oscillator. Fig. 4d
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shows the amplitude of vibrations of the nonlinear oscillator attached by absorber under different values of absorber mass.
It is noted that for a given set of system parameters, increase of absorber mass results in an increase in amplitude in the
neighbourhood of primary resonance frequencies. The two peaks in amplitude shift to the left with an increase of absorber
mass. The main reason for this is that the natural frequency of absorber decreases with an increase of absorber mass,
thereby leading to a small attenuation ratio and a shift in peak amplitude to the left.

The performance of vibration absorber on vibration suppression is also evident in the vibrational signals of the
nonlinear oscillator with and without absorber, as shown in Fig. 5, for a combination of k3 ¼ 2:5 N=m, f1 ¼ 0:45 N,
O¼ 2:13 rad=s. The amplitude of vibration of the nonlinear primary oscillator with attached vibration absorber is much
smaller than that of the nonlinear oscillator without absorber. On the contrary, the amplitude of vibration of the absorber
is much higher than that of the nonlinear primary oscillator, indicating that the majority of vibrational energy of the
nonlinear primary oscillator is transferred to the vibration absorber. This suggests the absorber can effectively suppress the
primary resonance vibrations of the nonlinear oscillator.

6. Conclusion

The primary resonance response of a nonlinear oscillator can be suppressed by a linear vibration absorber which
consists of a relatively light mass attached to the nonlinear oscillator by a linear damper and a linear spring. The small
attachment of light mass can absorb vibrational energy without significantly modifying the nonlinear oscillator and
adversely affecting its performance. The stiffness of the linked spring is much lower than the linear stiffness of the
nonlinear oscillator itself. The contributions of the absorber stiffness and damping to the linear stiffness and damping of
the nonlinear primary system can be considered as a perturbation. Thus the linearized natural frequencies of the nonlinear
primary oscillator before and after addition of vibration absorber change only slightly. It is found that significant reduction
of primary resonance vibrations can be achieved by using an absorber mass corresponding to 6% of the mass of the
nonlinear oscillator and an absorber spring corresponding to 4.5% of the linear stiffness of the nonlinear oscillator. Saddle-
node bifurcations and jump phenomena can also be eliminated through the application of a linear vibration absorber. The
effects of the parameters of the mass–spring–damper absorber on the vibration suppression of the nonlinear oscillator
have been studied. It has been found that a larger coupling damping results in a larger reduction of primary resonance
vibrations. The ratio of two linearized natural frequencies of the resulting nonlinear system that is formed by the nonlinear
primary system attached by the absorber is crucial for a higher desensitisation ratio and a lower attenuation ratio. The ratio
of the two linearized natural frequencies is dependent on the absorber stiffness and mass. An increase of absorber stiffness
will result in a larger ratio of the two linearized natural frequences however an increase of the absorber mass will decrease
the ratio of the two linearized natural frequencies. It is suggested that the frequency ratio can be a certain value between
0.7 and 0.9, which prevents the resultant two degree-of-freedom nonlinear system from one-to-one internal resonances
and which can lead to a better performance of vibration reduction.

There are several distinct features in the suppression of the nonlinear vibrations of nonlinear systems using linear
vibration absorber from the suppression of the vibrations of linear systems. For the nonlinear system considered in the
present paper, due to its distinctive nature in primary resonance response from the dynamics of linear system, there is no
need to shift the linearized natural frequency of the nonlinear primary system away from the excitation frequency,
whereas the natural frequencies of the resulting system composed of the linear system attached by vibration absorber are
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generally tuned to be away from the excitation frequency. Furthermore, it is a common practice from the linear theory of
vibration absorbers that the vibration absorber should be tuned to the resonance frequency of the linear primary system
when suppressing the vibrations of linear systems. However, when using linear vibration absorber to suppress the
nonlinear vibrations of nonlinear systems, the frequency of the absorber should not be tuned to the resonance frequency of
the nonlinear primary system. This will avoid one-to-one internal resonances that otherwise may happen in the primary
resonance response of the resultant nonlinear system. The presence of one-to-one internal resonances in a nonlinear
system may result in instability of the periodic response and higher-amplitude quasi-periodic oscillations. Lastly, unlike
the use of linear vibration absorber to suppress the vibrations of linear systems, there is no optimal value of the absorber
damping for suppressing the nonlinear vibrations of nonlinear systems using linear vibration absorber.

Perturbation analysis suggested that the nonlinear vibrations of the nonlinear primary oscillator act as an external
excitation to excite the vibrations of the absorber oscillator formed by the light mass. Most of the vibrational energy of the
nonlinear primary oscillator is then transferred to the absorber through coupling spring and damper. The vibration
absorber can effectively suppress the amplitude of oscillations of the nonlinear oscillator. Hence, by properly choosing the
mass of absorber and stiffness of the linked spring and damping of the linked damper, the primary resonance response of
the nonlinear oscillator can be reduced to a relatively small amplitude, while the excessive oscillatory energy is transferred
to the small mass attachment. As such, the vibration absorber provides a promising alternative to the application of active
vibration control of nonlinear system under conditions when active control is not feasible.
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